OPEN Foundation

Day: 8 March 2017

The Nucleus Accumbens and Ketamine Treatment in Major Depressive Disorder


Animal models of depression repeatedly showed stress-induced nucleus accumbens (NAc) hypertrophy. Recently, ketamine was found to normalize this stress-induced NAc structural growth. Here, we investigated NAc structural abnormalities in major depressive disorder (MDD) in two cohorts. Cohort A included a cross-sectional sample of 34 MDD and 26 healthy control (HC) subjects, with high-resolution magnetic resonance imaging (MRI) to estimate NAc volumes. Proton MR spectroscopy (1H MRS) was used to divide MDD subjects into two subgroups: glutamate-based depression (GBD) and non-GBD. A separate longitudinal sample (cohort B) included 16 MDD patients who underwent MRI at baseline then 24 h following intravenous infusion of ketamine (0.5 mg/kg). In cohort A, we found larger left NAc volume in MDD compared to controls (Cohen’s d=1.05), but no significant enlargement in the right NAc (d=0.44). Follow-up analyses revealed significant subgrouping effects on the left (d⩾1.48) and right NAc (d⩾0.95) with larger bilateral NAc in non-GBD compared to GBD and HC. NAc volumes were not different between GBD and HC. In cohort B, ketamine treatment reduced left NAc, but increased left hippocampal, volumes in patients achieving remission. The cross-sectional data provided the first evidence of enlarged NAc in patients with MDD. These NAc abnormalities were limited to patients with non-GBD. The pilot longitudinal data revealed a pattern of normalization of left NAc and hippocampal volumes particularly in patients who achieved remission following ketamine treatment, an intriguing preliminary finding that awaits replication.
Abdallah, C. G., Jackowski, A., Salas, R., Gupta, S., Sato, J. R., Mao, X., … & Mathew, S. J. (2017). The nucleus accumbens and ketamine treatment in major depressive disorder. Neuropsychopharmacology1, 8. 10.1038/npp.2017.49
Link to full text

Ketamine as a Rapid-Acting Antidepressant: Promising Clinical and Basic Research


Suicidal ideation and attempts are a common medical emergency, accounting for about 650,000 adult evaluations per year in emergency settings (1). Depressive disorders are a major driving force behind this, but first-line antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs), can take months to work, making them of limited use in acutely suicidal patients. Potentially safe and fast-acting interventions would be invaluable in acute situations until standard antidepressants have time to take effect.
Ketamine, best known as an N-methyl-d-aspartate receptor (NMDAR) antagonist commonly used as an anesthetic, has recently drawn attention for possibly filling the role. At lower doses it exhibits strong antidepressant effects in many patients, and it acts on the order of minutes. Despite these promising effects, its use as an antidepressant has been controversial, as ketamine is also a Schedule III controlled substance that is used recreationally for its dissociative and hallucinogenic effects. Furthermore, the full mechanism of action regarding its antidepressant effects has long remained unclear.
In the present article, we review research surrounding ketamine’s potential as a fast-acting antidepressant from a “two-pronged” approach: first, summarizing established and new knowledge on its mechanism of action and second, reviewing clinical research addressing its potential to quickly reduce depression and suicidality.
Tuck, A. N., & Ghazali, D. H. (2017). Ketamine as a Rapid-Acting Antidepressant: Promising Clinical and Basic Research. American Journal of Psychiatry Residents’ Journal12(3), 3-5. 10.1176/appi.ajp-rj.2017.120302
Link to full text

22 May - Delivering Effective Psychedelic Clinical Trials