OPEN Foundation

Day: 8 February 2017

Potential Antitumor Effect of Harmine in the Treatment of Thyroid Cancer

Abstract

Thyroid cancer is one of the most common types of cancer in endocrine system. In latest studies, harmine has been proved to inhibit the growth of several cancers in vitro and in vivo. In the current study, we evaluated the in vitro and in vivo anticancer efficiency of harmine against thyroid cancer cell line TPC-1. The in vitro cytotoxicity of harmine evaluated by XTT assay indicated that harmine suppressed the proliferation of TPC-1 cells in a dose- and time-dependent manner. Moreover, harmine dose-dependently induced apoptosis of TPC-1 cells through regulating the ratio of Bcl-2/Bax. The colony forming ability of TPC-1 cells was also time-dependently inhibited by harmine. The inhibitory effects of harmine on migration and invasion of TPC-1 cells were studied by wound scratching and Transwell assays. In vivo evaluation showed that harmine effectively inhibited the growth of thyroid cancer in a dose-dependent manner in nude mice. Therefore, harmine might be a promising herbal medicine in the therapy of thyroid cancer and further efforts are needed to explore this therapeutic strategy.

Ruan, S., Jia, F., & Li, J. (2017). Potential Antitumor Effect of Harmine in the Treatment of Thyroid Cancer. Evidence-Based Complementary and Alternative Medicine, 2017. 10.1155/2017/9402615
Link to full text

Rapid antidepressant effect of ketamine correlates with astroglial plasticity in the hippocampus

Abstract

BACKGROUND AND PURPOSE: Astroglia contribute to the pathophysiology of major depression and antidepressant drugs act by modulating synaptic plasticity; therefore, the present study investigated whether the fast antidepressant action of ketamine is reflected in a rapid alteration of the astrocytes’ morphology in a genetic animal model of depression.

EXPERIMENTAL APPROACH: S-Ketamine (15 mg·kg-1 ) or saline was administered as a single injection to Flinders Line (FSL/ FRL) rats. Twenty-four hours after the treatment, perfusion fixation was carried out and the morphology of glial fibrillary acid protein (GFAP)-positive astrocytes in the CA1 stratum radiatum (CA1.SR) and the molecular layer of the dentate gyrus (GCL) of the hippocampus was investigated by applying stereological techniques and analysis with Imaris software. The depressive-like behaviour of animals was also evaluated using forced swim test.

KEY RESULTS: FSL rats treated with ketamine exhibited a significant reduction in immobility time in comparison with the FSL-vehicle group. The volumes of the hippocampal CA1.SR and GCL regions were significantly increased 1 day after ketamine treatment in the FSL rats. The size of astrocytes in the ketamine-treated FSL rats was larger than those in the FSL-vehicle group. Additionally, the number and length of the astrocytic processes in the CA1.SR region were significantly increased 1 day following ketamine treatment.

CONCLUSIONS AND IMPLICATIONS: Our results support the hypothesis that astroglial atrophy contributes to the pathophysiology of depression and a morphological modification of astrocytes could be one mechanism by which ketamine rapidly improves depressive behaviour.

Ardalan, M., Rafati, A. H., Nyengaard, J. R., & Wegener, G. (2017). Rapid antidepressant effect of ketamine correlates with astroglial plasticity in the hippocampus. British Journal of Pharmacology, 174(6), 483-492. 10.1111/bph.13714
Link to full text

Crafting Music for Altered States and Psychedelic Spaces - Online Event - Jan 22nd