OPEN Foundation

Day: 3 February 2017

Sub-anesthetic doses of ketamine exert antidepressant-like effects and upregulate the expression of glutamate transporters in the hippocampus of rats

Abstract

Clinical studies on the role of the glutamatergic system in the pathogenesis of depression found that ketamine induces an antidepressant response, but the molecular mechanisms remain unclear. The present study investigated the effects of sub-anesthetic doses of ketamine on the glutamate reuptake function in the rat hippocampus. Chronic unpredictable mild stress (CUMS) was applied to construct animal models of depression. Sixty adult male Sprague-Dawley rats were randomly assigned to 5 groups and received a different regimen of CUMS and ketamine (10, 25, and 50 mg/kg) treatment. The sucrose preference test and open-field test were used to assess behavioral changes. The expression levels of excitatory amino acid transporters (EAATs) were measured by western blot. Microdialysis and high-performance liquid chromatography (HPLC) were used to detect hippocampal glutamate concentrations. We found that the expression of EAAT2 and EAAT3 were obviously downregulated, and extracellular concentrations of glutamate were significantly increased in the hippocampi of depressive-like rats. Ketamine (10, 25, and 50 mg/kg) upregulated the expression of EAAT2 and EAAT3, decreased the hippocampal concentration of extracellular glutamate, and alleviated the rats’ depressive-like behavior. The antidepressant effect of ketamine may be linked to the regulation of EAAT expression and the enhancement of glutamate uptake in the hippocampus of depressive-like rats.

Zhu, X., Ye, G., Wang, Z., Luo, J., & Hao, X. (2017). Sub-anesthetic doses of ketamine exert antidepressant-like effects and upregulate the expression of glutamate transporters in the hippocampus of rats. Neuroscience Letters, 639, 132-137. 10.1016/j.neulet.2016.12.070
Link to full text

Disrupted integration of sensory stimuli with information about the movement of the body as a mechanism explaining LSD-induced experience

Abstract

LSD (lysergic acid diethylamide) is a model psychedelic drug used to study mechanism underlying the effects induced by hallucinogens. However, despite advanced knowledge about molecular mechanism responsible for the effects induced by LSD and other related substances acting at serotonergic 5-HT2a receptors, we still do not understand how these drugs trigger specific sensory experiences. LSD-induced experience is characterised by perception of movement in the environment and by presence of various bodily sensations such as floating in space, merging into surroundings and movement out of the physical body (the out-of-body experience). It means that a large part of the experience induced by the LSD can be simplified to the illusory movement that can be attributed to the self or to external objects. The phenomenology of the LSD-induced experience has been combined with the fact that serotonergic neurons provide all major parts of the brain with information about the level of tonic motor activity, occurrence of external stimuli and the execution of orienting responses. Therefore, it has been proposed that LSD-induced stimulation of 5-HT2a receptors disrupts the integration of the sensory stimuli with information about the movement of the body leading to perception of illusory movement.

Juszczak, G. R. (2017). Disrupted integration of sensory stimuli with information about the movement of the body as a mechanism explaining LSD-induced experience. Medical Hypotheses, 100, 94-97. 10.1016/j.mehy.2017.01.022
Link to full text