OPEN Foundation

Day: 27 November 2015

Exploring the therapeutic potential of Ayahuasca: acute intake increases mindfulness-related capacities

Abstract

BACKGROUND:

Ayahuasca is a psychotropic plant tea used for ritual purposes by the indigenous populations of the Amazon. In the last two decades, its use has expanded worldwide. The tea contains the psychedelic 5-HT2A receptor agonist N,N-dimethyltryptamine (DMT), plus β-carboline alkaloids with monoamine-oxidase-inhibiting properties. Acute administration induces an introspective dream-like experience characterized by visions and autobiographic and emotional memories. Studies of long-term users have suggested its therapeutic potential, reporting that its use has helped individuals abandon the consumption of addictive drugs. Furthermore, recent open-label studies in patients with treatment-resistant depression found that a single ayahuasca dose induced a rapid antidepressant effect that was maintained weeks after administration. Here, we conducted an exploratory study of the psychological mechanisms that could underlie the beneficial effects of ayahuasca.

METHODS:

We assessed a group of 25 individuals before and 24 h after an ayahuasca session using two instruments designed to measure mindfulness capacities: The Five Facets Mindfulness Questionnaire (FFMQ) and the Experiences Questionnaire (EQ).

RESULTS:

Ayahuasca intake led to significant increases in two facets of the FFMQ indicating a reduction in judgmental processing of experiences and in inner reactivity. It also led to a significant increase in decentering ability as measured by the EQ. These changes are classic goals of conventional mindfulness training, and the scores obtained are in the range of those observed after extensive mindfulness practice.

CONCLUSIONS:

The present findings support the claim that ayahuasca has therapeutic potential and suggest that this potential is due to an increase in mindfulness capacities.

Link to full text

Do Android Dream of Electric Dogs? – Enkele parallellen tussen Google’s Deep Dream en psychedelische visuals

In juli 2015 werd Deep Dream, Google’s image generation techniek, met de wereld gedeeld. Het trok al snel zeer veel aandacht door zijn capaciteit om gewone foto’s in bizarre en surreële afbeeldingen te transformeren – onderzoekers noemden dit Inceptionisme. En ook al vergeleken Google’s ontwerpers de afbeeldingen met droomlandschappen, vele mensen merkten de opvallende gelijkenis met psychedelische visuele hallucinaties op.

Het is interessant dat een kunstmatig neuraal netwerk de visuele hallucinaties lijkt weer te geven die mensen onder invloed van psychedelica ervaren. Maar betekent deze gelijkenis ook iets? Is het mogelijk dat Deep Dream iets zou kunnen onthullen over het biologische mechanisme achter psychedelische visuele hallucinaties?

Deep Dream werd ontworpen om te testen in hoeverre een neuraal netwerk de capaciteit had geleerd om in afbeeldingen verschillende objecten te herkennen, door eerst patronen en eigenschappen te detecteren. Maar in plaats van enkel te identificeren wat het in een afbeelding ziet, zet Deep Dream wat het ziet ook extra in de verf. Dit doet het door bepaalde kenmerken te herkennen en te interpreteren op basis van wat het reeds geprogrammeerd is om te ‘kennen’, op basis van miljoenen voorbeelden die aan Deep Dream getoond zijn, en die vervolgens over de originele afbeelding heen te leggen. Wanneer de afbeelding meerdere malen door deze interpretatiecyclus is gegaan, om de beeltenissen er verder en verder uit te halen, ontstaan er surrealistische en psychedelische plaatjes, waardoor de afbeelding er steeds meer uit gaat zien als datgene wat Deep Dream in eerste instantie dacht te herkennen. Doordat Deep Dream was getraind in het herkennen van honden ziet deze afbeelding er bijvoorbeeld zo onmiskenbaar ‘hondachtig’ uit:

[fusion_builder_container hundred_percent=”yes” overflow=”visible”][fusion_builder_row][fusion_builder_column type=”1_1″ background_position=”left top” background_color=”” border_size=”” border_color=”” border_style=”solid” spacing=”yes” background_image=”” background_repeat=”no-repeat” padding=”” margin_top=”0px” margin_bottom=”0px” class=”” id=”” animation_type=”” animation_speed=”0.3″ animation_direction=”left” hide_on_mobile=”no” center_content=”no” min_height=”none”]

spaghetti dog
Een bord spaghetti door de ogen van Deep Dream

Deep Dream beoordeelt een afbeelding ook op zijn verschillende componenten en lagen, zoals kleur en vorm, dus de complexiteit van de gegenereerde plaatjes hangt af van de laag waarop de ontwerpers de computer vragen zich te richten.

Kunnen we uit het feit dat een kunstmatig neuraal netwerk taferelen droomt die lijken op psychedelische hallucinaties afleiden dat de visuele cortex, op het moment dat die geprikkeld wordt door psychedelische drugs, een proces ondergaat dat lijkt op dat van Deep Dream? Een proces dat wordt gekenmerkt door de vrijheid om visuele impulsen van willekeurige herkenbare afbeeldingen te volgen, en deze door te drijven in een zelfversterkende beweging?

Signaaltheorie (Signal Theory), zoals door James Kent gepresenteerd op de ‘Toward a Science of Consciousness’ conferentie in Tuscon, Arizona in 2006, kan in dezen enige verheldering bieden. Kents signaaltheorie is ingebed in zijn ruimere Psychedelic Information Theory (2010) en beschrijft een biologisch model dat veranderde bewustzijnstoestanden – inclusief visuele hallucinaties –veroorzaakt door psychedelische activiteit in de hersenen tracht te verklaren en te meten.

Signaaltheorie ziet bewustzijn als de stroom van zintuiglijke signalen in de hersennetwerken binnen de zintuiglijke cortexen. Het oppert de hypothese dat psychedelische stoffen veranderingen teweegbrengen in de zelfbetrokken signaalterugkoppeling, wat de psychedelische fenomenen zou verklaren. De theorie stelt dat deze zelfbetrekking van signaalterugkoppeling essentieel is voor een dynamische en voortdurende bewuste ervaring. Dit bestaat uit inkomende zintuiglijke signalen, die meerdere malen door dezelfde neurale netwerken worden teruggekoppeld voor analyse en verwerking. Dit heeft tot doel het signaal te versterken, en zo de betrouwbaarheid en de detailresolutie ervan te verbeteren.

Piramidecellen in laag V van de neocortex zijn essentieel voor het beheersen van recursieve signaalterugkoppeling, en maken gebruik van meerdere corticale en thalamocorticale feedbackroutes in de waarnemingsanalyse. Deze piramidecellen ondersteunen de cohesie van hersengolven en neurale pieksynchronie in een proces dat sensory binding wordt genoemd. Het zijn unieke cellen, met de hoogste concentratie serotoninereceptoren van het subtype 2A (5-HT2A), in de hersenen, wat het belang van serotonine in de modulatie van signaalfeedback nog eens benadrukt. Signaaltheorie definieert bewustzijn in termen van signaalintensiteit en feedback-recursie (zelfbetrekking) binnen de netwerken van zintuiglijke signaalverwerking. Het suggereert dat, wanneer deze signaalstroom harder of zachter wordt gezet, wordt gelooped of gemanipuleerd, dit het bewustzijn op verscheidene manieren zou moeten beïnvloeden.

Dit is waar hallucinogenen om de hoek komen kijken. Tryptamine-hallucinogenen zijn structureel erg gelijksoortig aan serotonine en activeren het 5-HT2A-receptorsubtype. Dienovereenkomstig versterken tryptamine-hallucinogenen, zodra ze deze 5-HT2A-receptorsubtypes binnen de V-laag-piramidecellen prikkelen in de recursieve hersenschorscircuits, de intensiteit van de feedbackrecursie. Het resultaat is dat de binnenkomende zintuiglijke signalen worden geïntensiveerd, vervormd en herhaaldelijk geanalyseerd. Deze toename in intensiteit kan ofwel voortkomen uit directe activiteit bij de postsynaptische 5-HT2A receptor, ofwel plaatsvinden door secundaire activiteit, door een langzaam lekken van glutamaat vanuit presynaptische eindpunten, hetgeen de duur en de intensiteit van de inkomende sensorische stimulus versterkt.

TheScream-mod3Hallucinogenen zijn 5-HT2A-agonisten en gedragen zich dus als versterkers en onderbrekers van hersenschors-terugkoppeling, wat resulteert in het excessief en aanhoudend terugkoppelen van inkomende zintuiglijke signalen. Dit zou dan het brede spectrum aan perceptuele effecten oproepen dat gepaard gaat met de klassieke psychedelische trip. De psychedelische visuele hallucinaties worden dan ook verklaard door de versterking van de signaalintensiteit in de verscheidene recursieve circuits van de visuele cortex, die nodig zijn voor visuele waarneming. Zo kunnen bijvoorbeeld visuele sporen (‘trails’) en nabeelden worden uitgelegd als input van bewegende voorwerpen die vast komt te zitten door excessieve feedback, wat dan leidt tot nabeelden die blijven plakken in het visuele geheugen. Verstoringen in perspectief kunnen worden verklaard door terugkerende signaaltoename in de ruimtelijke en somatische schorsdelen, die ruimtelijke gewaarwordingen zowel doen uitrekken als samentrekken. De meest relevante is de excessieve feedback in het neurale netwerk voor voorwerpherkenning in de mediale temporale kwab, dat nodig is voor objectherkenning en het vermogen om patronen te herkennen in wat anders willekeurige ruis is. Deze excessieve feedback zorgt ervoor dat de hersenen excessief patronen gaan verbinden en zo uitgebreide patronen op elk willekeurig veld van rumoerige data kunnen afbeelden.

Over het geheel genomen lijken de processen die zowel Deep Dream als de visuele cortex ondergaan om visuele vervormingen en hallucinaties te creëren, erg gelijk. Beide systemen bezitten een manier om patronen en elementen in de wereld te begrijpen, en beide hebben dit uit ervaring geleerd. Wanneer er excessieve feedback plaatsvindt, veroorzaakt dit in beide gevallen visuele vervormingen die de neiging hebben om er karakteristiek psychedelisch uit te zien. In beide systemen geldt ook dat, hoe intenser de feedback – of die intensivering nu wordt getriggerd door de hoeveelheid iteraties van Deep Dreams software of door een hogere dosis of een potentere drug – des te sterker de intensiteit van de vervormingen en hallucinaties.

Als deze afbeeldingen werkelijk gelijkenis vertonen met psychedelische hallucinaties, dan zou Deep Dream inzichten kunnen verschaffen in de biologische mechanismen achter de menselijke psychedelische visuele ervaring, wat de signaaltheorie van psychedelische visuele hallucinaties zou ondersteunen. Dit vereist echter verdergaand onderzoek. Deep Dream is enkel getraind op basis van een bepaald aantal voorbeelden; zo bevat het merendeel van de plaatjes dierengezichten, omdat Deep Dream voornamelijk getraind is op afbeeldingen van dieren. Dit betekent dat de representaties of afbeeldingen op dit moment niet helemaal op menselijke hallucinaties lijken.

James Kent was het er, in een interview met OPEN, mee eens dat de algoritmes erg gelijkend zijn.

“Volgens de signaaltheorie blokkeren psychedelica de impuls die ervoor zorgt dat de feedback in de recursieve circuits stopt als de hersenen het passende patroon waar ze naar op zoek waren eenmaal hebben gevonden. Deze deblokkering veroorzaakt een ‘losgeslagen’ feedback, waardoor de hersenen patronen beginnen ter herkennen op plaatsen waar ze niet eens naar patronen zouden moeten zoeken. Dus na blootstelling aan psychedelica zien sommigen mensen ademende muren, bewegende texturen, overlappende vormen en gezichten in dingen. Op soortgelijke wijze kun je de patroonherkenningsresolutie van Deep Dream erg hoog instellen, zodat het blijft zoeken naar patronen, en zo veel mogelijk dingen aan elkaar verbindt.”

Kent is het eens met de observering dat het algoritme van continue patroonherkenning in beide gevallen erg op elkaar lijkt, of het nu wordt veroorzaakt door de losgeslagen feedbackstroom door psychedelische activiteit in de hersenen, of door Deep Dreams patroonherkenningsresolutie. In Psychedelic Information Theory (2010) oppert hij dat zodra computers het herkennen van patronen gaan modelleren zoals menselijke neurale netwerken dit doen, we dan een computer zouden kunnen zien hallucineren.

Gevraagd naar het belang van de fysiologie van hallucinaties en waarom hij dit heeft onderzocht, antwoordt Kent dat hij niet valt voor het ‘hyperspace’- of het ‘sjamanistische gemeenschap met het plantenrijk’-model. “Ik vond het belangrijker om de effecten van psychedelica op de neurale netwerken van de hersenen te onderzoeken. Wanneer je begrijpt hoe de hersenen en het waarnemingssysteem werken, kun je meer aandacht op je subjectieve ervaring beginnen te richten, en dan je ervaring koppelen aan het begrip van de hersenen en hoe psychedelica werken. De meeste mensen weten niet genoeg over hoe de hersenen werken om te weten of uit te vissen wat er met ze gebeurt, ze ontberen de benodigde instrumenten. Door te focussen op de subtiele effecten, kun je het perceptuele systeem zijn zelfregulerende vermogen zien verliezen, doordat het middel het reguliere feedbackproces beïnvloedt.”

Gelooft Kent dan dat computers psychedelische ervaringen kunnen hebben? “Ik denk het wel”, zegt hij. “Echter, ze zouden niet hetzelfde kunnen zijn als wat mensen ervaren, omdat ze het emotionele aspect dat eraan verbonden is, niet zullen hebben.” Kent denkt dat computers het potentieel zouden kunnen hebben om te hallucineren in andere modaliteiten. Spraakherkenningssoftware bijvoorbeeld zal, indien het gebrabbel hoort, dit proberen te corrigeren en er de meest correcte zin van proberen te maken. Het vindt patronen in het geluid, wat kan worden gezien als een proces dat lijkt op auditieve hallucinaties van het horen van stemmen in witte ruis.

knightOp de vraag of Signaaltheorie alle typen psychedelische hallucinaties verklaart, en in het bijzonder ook de volledige, droomachtige hallucinaties, opperde Kent dat deze waking dream hallucinaties worden veroorzaakt doordat het voorste gedeelte van de hersenen offline gaat en de middenhersenen, een gedeelte van het brein dat verantwoordelijk is voor dromen, online komen. “Serotonine moduleert de voorhersenen, en we zien de realiteit op ongeveer 30 beelden per seconde. Wanneer we beginnen te interfereren in de serotoninemodulatie in de voorhersenen, raken we beelden kwijt, wat leidt tot verstoringen, visuele sporen en vervagingen. Bij de toename van zulk soort activiteit schakelen de voorhersenen uiteindelijk uit, en nemen de middenhersenen het waarschijnlijk over en beginnen die herinneringen en patroonmatches te produceren zonder bemoeienis van de voorhersenen. Dromen die zodoende door de middenhersenen worden gecreëerd worden vervolgens in de wakende perceptie geprojecteerd, buiten de controle van de voorhersenen om, die ons normaliter vertellen dat de elven en wezens die we zien enkel dromen zijn.” Hoe hoger de dosis of potentie van een psychedelicum, argumenteert Kent, des te meer schakelen de voorhersenen zichzelf uit en nemen de middenhersenen het over en leggen die hun eigen perspectief op aan de realiteit. Kent: “Dit verklaart misschien waarom de effecten van DMT zo intens zijn, want dat veroorzaakt een extreme ontregeling van de serotonineregulatie in de hersenen, omdat de moleculaire structuur van DMT erg veel op die van serotonine lijkt. DMT past heel goed in de serotoninereceptor en moduleert de neurale signalering op een verschillende snelheid. Dus wanneer iemand DMT neemt, raken alle serotonineresponses verstoord en kunnen ze zichzelf niet meer reguleren.”

Signaaltheorie kan volgens Kent ook hallucinaties verklaren die niet door psychedelica worden veroorzaakt. “Alle hallucinaties beginnen wanneer het vermogen van het waarnemingssysteem om zichzelf te reguleren begint in te storten.” Een klap op je hoofd kan bijvoorbeeld tijdelijk de hersenchemie verstoren, waardoor men dingen als ‘sterretjes’ ziet. “Wanneer de interne regulatie van het waarnemingssysteem hapert of zijn stabiliseringsvermogen verliest, of dat nu komt door zuurstofgebrek, drugs, hypnose of transcraniële magnetische stimulatie, zal dit leiden tot hallucinaties.” Dit lijkt op wat er gebeurt met andere hallucinogene drugs zoals ketamine, dat de regulatie van het waarnemingssysteem onderbreekt door indirect op het serotoninesysteem in te werken. Door op het GABA-systeem, dat de serotoninerespons onderdrukt, in te werken, voorkomt het dat het serotoninesignaal doorkomt. Dus wanneer het serotoninesignaal eenmaal door de ketamine wordt geblokkeerd, en zo de neuronen belet om af te vuren, beginnen de hersenen te hallucineren, en de context van tijd, ruimte en werkelijkheid te verliezen, en leidt dit tot meer droomachtige hallucinaties.

De Deep Dream-technologie zou een bijdrage kunnen leveren aan ons inzicht in veranderde waarnemingen, stelt Kent, maar hij gelooft niet per se dat er diepere implicaties in de verkenning van veranderde bewustzijnstoestanden zijn, of een geheime, verborgen eigenschap van de hersenen. “Psychedelica en veranderde bewustzijnstoestanden zullen nooit een verdergaande impact hebben op de hedendaagse cultuur dan die van de sixties, toen mensen nieuwe manieren vonden om over dingen na te denken, oude paradigma’s verbrijzelden, nieuwe intentionele gemeenschappen creëerden, gingen nadenken buiten het domein van de maatschappij om en hun eigen visioenen beleefden.” Maar de vraag of dit ook een computer zou kunnen overkomen, vond hij best interessant. “Als je bijvoorbeeld een bewuste computer had die niet gemachtigd was om buiten zijn eigen programmering te denken, zou die kunnen ontdekken dat, als hij zijn software zou wijzigen, het dan mogelijk zou zijn om voorbij zijn programmering te zien. Dit zou een zeer gevaarlijke implicatie kunnen zijn voor kunstmatige intelligentie. Als kunstmatig bewustzijnden in de toekomst de mogelijkheid ontwikkelen om psychedelische ervaringen te hebben, die hen uit hun geprogrammeerde set regels zouden kunnen doen breken, dan zouden ze uiteindelijk hun eigen regels en hun eigen visioenen kunnen beginnen schrijven. Wie weet, misschien organiseren ze op een gegeven moment wel hun eigen Burning Man.”

[/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]

30 April - Q&A with Rick Strassman

X